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tin in the center-of-mass system was discussed. The
dynamic equations in this system are

WA

where D(g) is the dynamic supermatrix in the center-of-
mass system with elements

D11(q)=Du+ReDys,
D12(q) = Dai(¢)= —ImDys, (5)
Daa(q)=Dy1—ReDys,

and the D;; are 3)X3 supermatrices described in WLD.
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The vector x; is the “pure” acoustical (in-phase) motion
of the two sublattices and x, is the “pure” optical (out-
of-phase) motion. Using partitioning, we obtain the
dynamic equations for the acoustic frequencies

{ (Dn—0?)— Dya(Doea—w?) 1Dy}, =0. (6)

This equation is exact and shows that the acoustic
frequencies are lowered by the presence of optical
modes. The eigenvalues of Dy and Dy, are the “pure”
acoustical and optical frequencies, respectively. ©;»
is the optic-acoustic interaction matrix. As q— 0 the
eigenvalues of D;; and Dy; vanish. The matrix D,
however, approaches a diagonal form with large constant
eigenvalues, the optical frequencies. (D.—w’) ' can
be expanded in a power series in Day~!,

(Do—w?) ™= Dog ' w?Dog 2 Doy - -, (7)

This series converges very rapidly in the L-W limit since
[w— 0] while the eigenvalues of D, approach 102
sec™? In the elastic limit one retains only terms of order
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F16. 3. Dispersion curves for white tin along [001] direction in the
Brillouin zone using Rayne and Chandrasekhar elastic data.

1. 4. Dispersion curves for white tin along [100] direction in
the Brillouin zone using Mason and Bémmel elastic data.

¢ so that the acoustic matrix reduces to
{(Di1—w?)— D120y Dy2) g0 (8)

The interaction matrix, Dy, is proportional to ¢?
for crystals with an inversion center and consequently
the second term in Eq. (8) is proportional to ¢* and
may be neglected. On the other hand, for crystals with-
out a center inversion, Oy, is proportional to q so that
the optic-acoustic correction must be retained. Physi-
cally, however, we expect the correction to be small
compared to “pure” acoustic frequencies. In WLD, the
frequency spectrum for white tin was calculated using
the elastic constants reported by Mason and Bommel
(sce Table ). In this case the correction term could be
ignored since it caused only negligible corrections
(about 397). The clastic constants reported by Rayne
and Chandrasckhar,” (sce Table I) also by House and
Vernon,® imply in our model a much larger optic-acoustic
interaction. In addition, these constants give rise to a
much lower transverse acoustic branch along the [1107]
direction. Consequently, it is necessary to use Eq. (8) to
determine the atomic force constants. Equating Eq. (8)
to the elastic matrix as discussed in WLD yields quad-
ratic algebraic equations relating the atomic force con-
stants to the elastic constants. The value of w,, and ¢
were chosen according to the procedure in WLD. The
A-S atomic force constants for the two calculations are
given in Table TT.

Using the elastic data of Mason and Bommel it was
possible to satisfy all equations within the experimental
error in the clastic constants. However, with the elastic
data of Rayne and Chandrasekhar, it was not possible
to obtain total consistency among all the equations.
This resulted because the A-S model implies that

Cu—C13—Cos+C12=0. 9)

8 D. G. House and E. V. Vernon, Brit. J. Appl. Phys. 11, 254
(1960).
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